Regression analysis of mixed recurrent-event and panel-count data with additive rate models.
نویسندگان
چکیده
Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study.
منابع مشابه
Additive-multiplicative rates model for recurrent events.
Recurrent events are frequently encountered in biomedical studies. Evaluating the covariates effects on the marginal recurrent event rate is of practical interest. There are mainly two types of rate models for the recurrent event data: the multiplicative rates model and the additive rates model. We consider a more flexible additive-multiplicative rates model for analysis of recurrent event data...
متن کاملRegression analysis of multivariate panel count data.
We consider panel count data which are frequently obtained in prospective studies involving recurrent events that are only detected and recorded at periodic assessment times. The data take the form of counts of the cumulative number of events detected at each inspection time, along with explanatory covariates. Examples arise in diverse areas such as epidemiological studies, medical follow-up st...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملAdditive and multiplicative hazards modeling for recurrent event data analysis
BACKGROUND Sequentially ordered multivariate failure time or recurrent event duration data are commonly observed in biomedical longitudinal studies. In general, standard hazard regression methods cannot be applied because of correlation between recurrent failure times within a subject and induced dependent censoring. Multiplicative and additive hazards models provide the two principal framework...
متن کاملHigher Education and Labor Market Imbalances in Iran: A Dynamic Panel Data Analysis
Higher Education (HE) in Iran have been subject to a major expansion and massification in the recent years, in a way that number of students approximately tripled from 2006 to 2016. This would have possibly affected labor market or unemployment rate of the country. Considering both provincial and national level, this study investigates the relationship between HE expansion and unemployment rate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2014